AMOENOLIDE K AND AMOENOLIDE K 19-ACETATE, TWO GRINDELANE PEROXIDES FROM AMPHIACHYRIS AMOENA. ISOLATION, STRUCTURE DETERMINATION, AND PREPARATION OF AMOENOLIDE K FROM AMOENOLIDE A BY PHOTOCHEMICAL OXYGENATION ${ }^{1}$

Dónal P. O'Mathúna ${ }^{2}$ and Raymond W. Doskotch*
Division of Medicinal Chemistry and Pbarmacognosy, College of Pbarmacy, The Obio State University, Columbus, Obio 43210-1291

Abstract

Two new 9,13-diepoxy labdane diterpenes, amoenolide $\mathrm{K}[\mathbf{1}]$ and its 19acetate [2], were isolated from the aerial parts of the composite Amphiachyris amoena and their structures were established by spectral methods, especially high-field nmr spectroscopy. Amoenolide $\mathrm{K}[1]$ was prepared from amoenolide $\mathrm{A}[3]$ by singlet oxygen addition via the ene reaction. A study was made of the ene reaction products with amoenolide K triacetate $[5]$ which showed them to arise from stereospecific oxygen addition to the 8,9 -double bond, with the exception of the sterically hindered β-side at $\mathrm{C}-9$, for which no products were isolated.

The annual composite, Ampbiachyris amoena (Shinners) Solbrig has yielded 14 new labdanes ($1-3$) and two new chettaphane diterpenes (4). We report herein the isolation and characterization of two new grindelane peroxides, amoenolide $\mathrm{K}[\mathbf{1}]$ and amoenolide K 19-acetate [2] from the same source, and photochemical oxygenation studies with amoenolide A [3] and its triacetate [4] (1). The latter study provided the grindelane peroxide ring system, as well as a number of interesting oxygenation products, which could be explained by the initial direction of oxygen addition by the ene reaction.

RESULTS AND DISCUSSION

Amoenolide K [1] $\mathrm{mp} 168-169^{\circ}$, and its 19 -acetate [2], mp 159-160 ${ }^{\circ}$, were isolated from the reported MeOH -soluble partition fraction (1) after repeated chromatography and have the respective formulas $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}$, and $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{8}$, as supported by fabms. Both gave the same triacetate [5], indicating an identical core structure with three acylable hydroxyls. The ${ }^{1} \mathrm{H}$-nmr spectrum (Table 1) of amoenolide $\mathrm{K}[\mathbf{1}]$, taken in

$1 \quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$2 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ac}$
$5 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ac}$

$3 \mathrm{R}=\mathrm{H}$
$4 \mathrm{R}=\mathrm{Ac}$

[^0]Table 1. 'H-Nmr Data for Compounds 1, 2, and 5-11.'

September 1995] O'Mathúna and Doskotch: Diterpenoids from Amphiachyris 1409
Table 1. Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Proton(s)} \& \multicolumn{11}{|l|}{Compound}

\hline \& $1{ }^{1 /}$ \& 2 \& $2^{\text {b }}$ \& 5 \& $5{ }^{\text {b }}$ \& 6 \& 7 \& 8 \& 9 \& 10 \& 11

\hline \multirow[t]{2}{*}{$\mathrm{H}-17$

$\mathrm{H}-18$} \& \[
$$
\begin{aligned}
& 5.20 \mathrm{As} \\
& 4.91 \mathrm{~B} \mathrm{~s}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.27 \mathrm{~A} \mathrm{~s} \\
& \omega_{1 / 2}=3.2 \mathrm{I} \mathrm{z} \\
& 4.86 \mathrm{~B} \mathrm{~s} \\
& \omega_{1 / 2}=2.7 \mathrm{~Hz}
\end{aligned}
$$

\] \& 5.21 A br s $\omega_{1 / 2}=4.0 \mathrm{~Hz}$ 4.93 B br s $\omega_{1 / 2}=3.2 \mathrm{~Hz}$ \& \[

$$
\begin{aligned}
& 5.33 \mathrm{Ad} \\
& (1.2) \\
& 4.89 \mathrm{~B} \mathrm{~s}
\end{aligned}
$$

\] \& | 5.31 Ad |
| :--- |
| (1.2) |
| 5.05 B brs |
| $\omega_{1 / 2}=2.8 \mathrm{~Hz}$ | \& \[

$$
\begin{aligned}
& 5.17 \mathrm{Ad} \\
& (1.3) \\
& 4.75 \mathrm{~B} \mathrm{hm}
\end{aligned}
$$

\] \& 1.45 s \& 1.48 s \& 1.15 s \& 1.15 s \& \[

$$
\begin{aligned}
& 5.04 \mathrm{~A} \mathrm{~d} \\
& (1.7) \\
& 4.93 \mathrm{~B} \mathrm{br} \mathrm{~s} \\
& \omega_{1 / 2}=3.1 \mathrm{~Hz}
\end{aligned}
$$
\]

\hline \& 1.28 s \& 1.32 s \& 1.32 s \& 1.19 s \& 1.21 s \& 1.21 s \& 1.00 s \& 1.00 s \& 1.23 s \& 1.09 s \& 1.20 s

\hline \multirow[t]{2}{*}{H-19} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 3.51 \mathrm{dd} \\
& (10.7,4.2) \\
& 3.87 \mathrm{dd} \\
& (10.5,4.3)
\end{aligned}
$$} \& $4.16 \mathrm{~d}(11.0)$ \& 4.09 d (10.6) \& 4.06 d (11.5) \& \multirow[t]{2}{*}{4.09 (2H) s} \& 4.07 d (11.5) \& 4.14 d (11.4) \& $4.13 \mathrm{~d}(11.5)$ \& 3.97 d (11.6) \& 4.11 d (11.5) \& 4.06 d (11.5)

\hline \& \& 4.23 d (11.0) \& 4.36 d (10.8) \& 4.08 d (11.5) \& \& 4.10 d (11.5) \& 4.27 d (11.5) \& 4.26 d (11.5) \& 4.12 d (11.6) \& 4.15 d (11.5) \& 4.09 d (11.5)

\hline H-20 \& 0.93 s \& 0.90 s \& 0.91 s \& 0.99 s \& 1.01 s \& 0.99 s \& 1.31 s \& 1.33 s \& 1.18 s \& 1.32 s \& 0.94 s

\hline \multirow[t]{4}{*}{Misc.} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 3.50(2-\mathrm{OH}) \\
& \text { hd } \\
& 3.82(6-\mathrm{OH}) \\
& \mathrm{d}(4.7) \\
& 4.03(19-\mathrm{OH}) \\
& \mathrm{dd}(4.5,4.5)
\end{aligned}
$$} \& \multirow[t]{4}{*}{2.08 (Ac) s} \& \multirow[t]{4}{*}{2.00 (Ac) s} \& 2.04 (Ac) s \& 1.97 (Ac) s \& 2.030 (Ac) s \& 2.03 (Ac) s \& 2.02 (Ac) s \& 2.03 (Ac) s \& 2.00 (Ac) s \& 2.03 (Ac) s

\hline \& \& \& \& $$
2.05(\mathrm{Ac}) \mathrm{s}
$$ \& \[

1.98(\mathrm{Ac}) \mathrm{s}

\] \& \[

2.033(\mathrm{Ac}) \mathrm{s}

\] \& \[

2.05(\mathrm{Ac}) \mathrm{s}

\] \& \[

2.04(\mathrm{Ac}) \mathrm{s}

\] \& \[

2.04(\mathrm{Ac}) \mathrm{s}

\] \& \[

2.061(\mathrm{Ac}) \mathrm{s}

\] \& \[

2.03(\mathrm{Ac}) \mathrm{s}
\]

\hline \& \& \& \& $$
2.06(\mathrm{Ac}) \mathrm{s}
$$ \& \[

2.04(\mathrm{Ac}) \mathrm{s}

\] \& \[

2.06(\mathrm{Ac}) \mathrm{s}
\]

$$
1.80(9-\mathrm{OH})
$$ \& 2.09 (Ac) s \& 2.08 (Ac) s \& 2.07 (Ac) s \& 2.062 (Ac) s \& \[

$$
\begin{aligned}
& 2.05(\mathrm{Ac}) \mathrm{s} \\
& 3.05(\mathrm{OH}-14)
\end{aligned}
$$
\]

\hline \& \& \& \& \& \& 1.80 (9-OH) \& \& \& \& \& brs

\hline
\end{tabular}

[^1]$\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ because of insolubility in CHCl_{3} and instability in MeOH and pyridine, showed multiplicity patterns in the carbinyl region at 3.71 and 3.83 ppm similar to those observed for $\mathrm{H}-2$ and $\mathrm{H}-6$ in amoenolide $\mathrm{A}\{3]$. Also, $\mathrm{D}_{2} \mathrm{O}$ exchange removed three broadened downfield patterns for the three hydroxyls and the hydroxyl coupling from the carbinyl patterns. Extensive 1D and 2D nmr studies ${ }^{3}$ established the complete stereochemical structure of $\boldsymbol{1}$ beginning with ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ and CH -correlation experiments. These revealed six ${ }^{1} \mathrm{H}$-coupled units, three of which, when combined, formed a bicyclic system forming rings A and B , akin to those of amoenolide A [3], except that an exocyclic olefin replaces the $\mathrm{C}-8$ to $\mathrm{C}-9$ endocyclic double bond. For example, the H 2 carbinyl proton (3.71 ppm) was coupled to the C-2 (0.97 and 1.89 ppm) and C-1 (1.42 and 1.83 ppm) methylenes, of which the 1.42 ppm proton was " W-coupled" to $\mathrm{Me}-20$ at 0.93 ppm . The $\mathrm{Me}-18$ (1.28 ppm) signal was also " W-coupled" to one $\mathrm{H}-19$ (3.87 ppm) of the $\mathrm{C}-19$ hydroxymethylene, which makes up the second proton-coupled unit. The third unit involved the H-6 carbinyl proton (3.89 ppm) coupled to $\mathrm{H}-5$ (1.93 ppm) and to the C-7 methylene (2.39 and 2.53 ppm) of which the latter proton was allylically coupled to two olefinic protons (4.91 and 5.20 ppm) at $\mathrm{C}-17$. The long-range $\mathrm{CH}-$ correlation (COLOC) experiment identified the four quaternary carbons (Table 2) of the A / B ring system and confirmed the arrangement of the proton coupled units. The key interactions were: $\mathrm{Me}-18$ (1.28 ppm) coupled to $\mathrm{C}-2(48.58 \mathrm{ppm}), \mathrm{C}-4(41.36 \mathrm{ppm})$, C5 (51.07 ppm), and C-19 (67.80 ppm); Me-20 coupled to C-5 (51.07 ppm), C-9 (86.64 ppm), and C-10 (45.68 ppm); H-7 (2.39 ppm) coupled to C-5 (51.07 ppm), C-8 (145.21 ppm), and C-17 (114.72 ppm); H-1 (1.42 ppm) coupled to $\mathrm{C}-10$ (45.68 ppm) and C20 (19.34 ppm); and H-17 (5.21 ppm) coupled to C-7 (44.27 ppm) and C-9 (86.64 ppm).

The stereochemical disposition of the substituents on the A / B rings was established from nOe studies by the difference method at 270 MHz with $2 . \mathrm{Nmr}$ experiments gave the same proton-coupled units and arrangement as reported for 1 . C-19 contained the acetate group as shown by the downfield shift of $\mathrm{H}_{2}-19$ from 3.51 and 3.87 ppm in $\mathbf{1}$ to 4.09 and 4.36 ppm in 2 and the long-range CH -coupling of $\mathrm{H}_{2}-19$ to the acetate carbonyl at 171.13 ppm , which in turn was coupled to the acetate methyl at 2.00 ppm from the inverse COLOC (HMBC) experiment (5). From the nOe results, the following irradiations identified the β-faced substituents: $\mathrm{Me}-20(0.91 \mathrm{ppm})$ showed relaxation to $\mathrm{H}-2(3.75 \mathrm{ppm})$ at $4 \%, \mathrm{H}-6(3.80 \mathrm{ppm})$ at $13 \%, \mathrm{H}-17 \mathrm{~B}(4.93 \mathrm{ppm})$ at 2% and $\mathrm{H}-19$ (4.36 ppm) at 10%; $\mathrm{H}-17 \mathrm{~A}(5.21 \mathrm{ppm})$ relaxed to $\mathrm{H}-7(2.45 \mathrm{ppm})$ at 5% and $\mathrm{H}-17 \mathrm{~B}$ (4.93 ppm) at 24%; $\mathrm{H}-1(1.85 \mathrm{ppm})$ relaxed to $\mathrm{H}-2(3.75 \mathrm{ppm})$ at 7%, Me-20 (0.91 $\mathrm{ppm})$ at 2% and the other $\mathrm{H}-2(1.43 \mathrm{ppm})$ at 18%; and $\mathrm{H}-7(2.45 \mathrm{ppm})$ relaxed to $\mathrm{H}-$ $6(3.80 \mathrm{ppm})$ at $7 \%, \mathrm{H}-17 \mathrm{~A}(5.21 \mathrm{ppm})$ at 7% and the other $\mathrm{H}-7(2.57 \mathrm{ppm})$ at 16%. The α-faced substituents were likewise identified: $\mathrm{Me}-18$ (1.32 ppm) relaxed to $\mathrm{H}-3$ (0.94 ppm) at $5 \%, \mathrm{H}-5(2.06 \mathrm{ppm})$ at 15% and $\mathrm{H}-19(4.09 \mathrm{ppm})$ at $4 \% ; \mathrm{H}-1(1.43 \mathrm{ppm})$ relaxed to $\mathrm{H}-3(0.94 \mathrm{ppm})$ and $\mathrm{H}-5(2.06 \mathrm{ppm})$ both at 3% and to the other $\mathrm{H}-1$ (1.85 $\mathrm{ppm})$ at 17%; and $\mathrm{H}-7(2.57 \mathrm{ppm})$ relaxed to $\mathrm{H}-5(2.06 \mathrm{ppm})$ at 6% and to the other $\mathrm{H}-7$ (2.45 ppm) at 17%. The nOe results also indicated that $\mathrm{H}-19$ at 4.36 ppm resided over ring A because of its interaction with $\mathrm{Me}-20$, while the $\mathrm{H}-19$ at 4.09 ppm on the other hand relaxed to $\mathrm{Me}-18$ at 2%.

With the A / B ring system established for $\mathbf{1}$ and its acetate $\mathbf{2}$ as a trans-decalin, the remainder of the structure required accommodation of six carbons, four oxygens, and three double-bond equivalents. The three remaining proton coupled units-a four-spin

[^2]Table 2. ${ }^{13} \mathrm{C}-\mathrm{Nmr}$ Data for Compounds 1,2 and 5-11.

Carbon	Compound											
	$1{ }^{\text {b }}$	Multiplicity	2	$2^{\text {b }}$	5	$5{ }^{\text {b }}$	6	7	8	9	10	11
C-1	43.11	t	41.87	42.79	38.03	38.52	38.02	45.88	45.92	43.76	42.48	37.65
C-2	64.20	d	64.55	63.93	67.72	72.80	68.01	67.87	67.75	67.52	66.90	68.00
C-3	48.58	t	46.69	46.99	42.79	43.31	42.88	42.14	42.21	43.04	42.45	42.86
C-4	41.36	s	39.37	39.84	38.94	39.47	38.88	38.87	38.83	39.26	38.64	38.87
C-5	51.07	d	50.80	51.31	47.86	48.55	48.37	50.51	49.95	55.50	47.41	49.21
C-6	71.43	d	70.92	70.64	72.40	74.29	72.26	68.31	68.31	68.85	67.81	72.05
C-7	44.27	t	44.01	44.93	38.94	39.81	39.18	37.21	44.02	41.78	36.78	39.38
C-8	145.21	s	142.89	144.75	141.49	142.78	143.39	82.81	71.33	66.94	64.53	144.74
C-9	86.64	s	85.86	86.63	85.82	86.50	78.78	152.14	156.63	71.59	71.87	90.89
C-10	45.68	s	45.19	45.50	45.22	45.74	45.49	41.17	41.36	42.24	39.23	43.90
C-11	19.77	t	19.41	19.79	19.44	19.74	27.99	120.25 d	119.81 d	134.72 d	132.44 d	26.28
C-12	27.32	t	27.61	27.30	27.46	27.13	24.05	28.56	29.13	124.59 d	125.15 d	29.19
C-13	84.30	s	83.19	84.37	83.23	84.58	170.59 s	$170.19^{\text {c }}$	$170.41^{\text {c }}$	160.42	160.32	87.38
C-14	39.33	t	39.33	39.30	39.23	39.24	115.57 d	115.81 d	115.62 d	116.65 d	116.88 d	72.93 d
C-15	174.70	s	173.78	174.57	173.65	174.45	173.96	174.36	174.26	173.60	173.53	175.24
C-16	74.34	t	74.36	74.28	74.28	74.72	73.27	73.47	73.39	70.58	70.57	74.91
C-17	114.72	t	115.27	114.72	116.29	116.44	114.37	26.94 q	31.38 q	19.46 q	19.57 q	112.23
C-18	32.32	q	31.63	32.10	31.19	31.45	31.41	27.70	27.93	31.33	29.31	30.97
C-19	67.80		68.01	67.67	68.01	72.80	67.84	67.52	67.55	67.35	67.52	67.86
C-20	19.34	q	19.29	19.53	18.84	18.97	18.95	26.54	27.62	18.14	20.14	19.79
MeCO		q	21.29	20.76	20.89	20.63	20.95	20.94	20.98	20.87	20.94	20.87
MeCO		q			21.49	21.20	21.53	21.46	21.49	21.47	21.46	21.50
MeCO		q			21.86	21.70	21.91	21.80	21.82	21.78	21.76	21.84
MeCO.			171.27	171.13	169.94	170.06	170.00	170.27	170.16	169.77	170.42	169.94
MeCO .		s			170.53	170.40	170.54	170.60	$170.56^{\text {c }}$	170.32	170.48	170.65
MeCO .		s			171.07	171.01	171.16	171.13	171.07	171.03	171.00	171.13

${ }^{a}$ Taken at 67.9 MHz in CDCl_{3} or as stated otherwise with multiplicities determined by SFORD. The chemical shifts (δ) in ppm were referenced to Me ${ }_{4} \mathrm{Si}$ with the reference peak of solvent taken as 77.2 ppm (center). Data point resolution of 0.7 Hz .
${ }^{1} \mathrm{In} \mathrm{Me} 2 \mathrm{CO}-d_{6}$ with solvent peak referenced at 29.8 ppm . 'May be interchanged.
dimethylene and two isolated methylenes-were easily placed into a double spiro system at $\mathrm{C}-9$ to conform with the labdane skeleton and the isoprene order of the side-chain. Compound 1 lacked the characteristic ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ peaks and patterns for the α, β unsaturated $\boldsymbol{\gamma}$-lactone (butenolide) group (1), but did show one carbon peak at 174.70 ppm , as well as a strong ir peak at $1790 \mathrm{~cm}^{-1}$ in support of a saturated lactone. The last two oxygens had to be ether oxygens and were designated as epidioxides forming the endoperoxide six-membered ring C. This was supported by the instability of the compounds and a positive starch iodide test. Stereospecific assignments for the spiro protons were made from $n O$ estudies at 270 MHz on 2, with the pertinent results as follows: irradiation of $\mathrm{H}-17 \mathrm{~B}(4.93 \mathrm{ppm})$ showed relaxation to $\mathrm{H}-11(2.02 \mathrm{ppm})$ at 3% and $\mathrm{H}-12 \mathrm{~A}(2.31 \mathrm{ppm})$ at 4%. This and a NOESY experiment that showed interaction between $\mathrm{Me}-20$ and $\mathrm{H}_{2}-11$ required that the dimethylene group be placed on the β-side (equatorial). In turn, irradiation at $\mathrm{H}-12 \mathrm{~A}$ gave relaxation to $\mathrm{H}-17 \mathrm{~B}$ and $\mathrm{H}-14 \mathrm{~A}$ (2.73 $\mathrm{ppm})$ each at 5% and $\mathrm{H}-12 \mathrm{~B}(1.94 \mathrm{ppm})$ at 16%, while irradiation at $\mathrm{H}-14 \mathrm{~A}$ produced relaxation to $\mathrm{H}-16 \mathrm{~A}(4.30 \mathrm{ppm})$ at 2% and $\mathrm{H}-14 \mathrm{~B}(2.21 \mathrm{ppm})$ at 29%. Furthermore, irradiation at $\mathrm{H}-16 \mathrm{~B}$ showed relaxation to $\mathrm{H}-16 \mathrm{~A}$ at 27% and to $\mathrm{H}-1 \alpha$ (1.43 ppm) at 3%. The latter proton ($\mathrm{H}-1 \alpha$) in a reciprocal irradiation relaxed to $\mathrm{H}-16 \mathrm{~B}$ at 4%, but not to $\mathrm{H}-14 \mathrm{~B}$; thereby requiring a conformation for ring D in which $\mathrm{H}-14 \mathrm{~A}$ and $\mathrm{H}-16 \mathrm{~A}$ are quasi axial and the oxymethylene unit of the lactone to be positioned on the ring A side. Differentiation between $\mathrm{H}_{2}-14$ and $\mathrm{H}_{2}-16$ was made from their ${ }^{1} \mathrm{H}$-nmr chemical shifts and J values (6).

The nOe studies with 2 allowed complete assignment of the ${ }^{1} \mathrm{H}$-nmr spectrum which, with the 2D nmr experiments (CH-correlation and HMBC), allowed for a complete ${ }^{13} \mathrm{C}$-nmrassignment. Comparison of these results with the nmr data from 1 and its triacetate [3] along with their 2D nmr studies established the assignment of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra as found in Tables 1 and 2, respectively.

The grindelane peroxide structure of 1 as determined from the spectral data suggested it could originate from 3 by a two-step sequence involving first, singlet oxygen addition via the less-hindered α-side to the 8,9 -double bond by the ene reaction $(7,8)$ to give the 9 -hydroperoxide and the 8,17 -double bond, followed by a regioselective Michael-type addition of the hydroperoxide to the 13,14-double bond. Indeed, this reaction was accomplished with methylene blue as sensitizer, but only in a 14% yield along with other intractable products. The yield was raised to 40% when amoenolide A triacetate [4] was used. This transformation did establish the absolute stereochemistry for $\mathbf{1}$ and $\mathbf{2}$, since the stereochemistry of $\mathbf{3}$ is known (1). Evidence for the hydroperoxide intermediate was obtained from the photo-oxygenation of amoenolide A triacetate [4], in the presence of thiourea as reducing agent which gave alcohol 6 in a yield of 12%. The yield of amoenolide K triacetate [5] dropped by half to 21%, thus supporting the precursor-product relation between the hydroperoxide and the endoperoxide 5.

The photo-oxygenation byproducts reported below were all characterized by spectral methods, especially 1D (homonuclear decoupling and nOe) and 2D (COSY, NOESY, CH-correlation and COLOC) nmr studies with details not reported here. Only the relevant data for assigning the structures are given. Alcohol 6 has the formula $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{9}$, as supported by fabms with rings A and B the same as for 5 , and the side-chain unit that of 3. Positioning of the side-chain in the equatorial β position was supported by the nOe experiment in which $\mathrm{Me}-20$ was irradiated and gave a 5% enhancement of the $\mathrm{H}_{2}-11$ pattern at 1.99 ppm . Alcohol 6 is thus the reduced product of the corresponding C-9 hydroperoxide.

In addition to the formation of 5 on photo-oxygenation of $\mathbf{4}$, a number of other products were indicated by tlc examination. Four of the most stable were isolated and

6

$7 \mathrm{R}=\mathrm{OH}$
$8 \mathrm{R}=\mathrm{H}$
characterized. One, an allylic hydroperoxide, was assigned structure 7. The fabms supported the molecular formula $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{10}$ with two oxygens more than in the starting material and no change in the degrees of unsaturation. A positive peroxide test (9) and the 1 D and 2D nmr studies showed that the change in structure from the starting material involved C-8, C-9, and C-11. The olefinic methyl group was replaced by a tertiary methyl on an oxygen-bearing carbon and the endocyclic olefin became exocyclic. The compound was established as the ene reaction product in which the oxygen attacked $\mathrm{C}-8$ from the β-side with a concerted $\mathrm{C}-9$ to $\mathrm{C}-11$ double bond formation and hydrogen transfer from $\mathrm{C}-11$ to the oxygen. The nOe difference experiments established the stereochemistry thus: irradiation of $\mathrm{H}-7 \alpha(1.73 \mathrm{ppm})$ showed relaxation to $\mathrm{Me}-17$ (1.45 $\mathrm{ppm})$ at 2% and to $\mathrm{H}-7 \beta$ (2.84 ppm) at 11%; irradiation at $\mathrm{H}-5$ (1.63 ppm) gave relaxation to $\mathrm{Me}-17$ at 4%, to $\mathrm{H}-1 \alpha(1.31 \mathrm{ppm})$ at 3%, to $\mathrm{H}-3 \alpha(1.18 \mathrm{ppm})$ at 2% and to $\mathrm{Me}-18(0.99 \mathrm{ppm})$ at 3%; irradiation of $\mathrm{Me}-17$ caused enhancement of $\mathrm{H}_{2}-12$ (3.59 ppm) by 6%, of $\mathrm{H}-14$ (5.86 ppm) by 2% and of $\mathrm{H}-7 \alpha$ by 3%; and irradiation of $\mathrm{H}-1 \beta$ (2.32 ppm) gave relaxation to $\mathrm{H}-11(5.54 \mathrm{ppm})$ at 13%. Additional irradiation supported the olefin substitution as drawn with the designation Z. Reduction of compound 7 with $\mathrm{Ph}_{3} \mathrm{P}$ produced the corresponding alcohol 8 , which substantiated the presence of the hydroperoxide group.

The two isomeric lactones, compounds 9 and $\mathbf{1 0}$, have the same molecular formula, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{9}$, as supported by fabms, and comparison of their nmr spectra showed them to have nearly identical ${ }^{1} \mathrm{H}$-nmr patterns and the same ${ }^{13} \mathrm{C}-\mathrm{nmr}$ multiplicities. The additional oxygen and one degree of unsaturation more than that in the starting material suggested they were not primary products of photo-oxygenation. Comparison of the ${ }^{13} \mathrm{C}$ nmr spectra with that of the starting material showed the loss of the methylenes at C 11 and $\mathrm{C}-12$, and the olefinic carbons at $\mathrm{C}-8$ and $\mathrm{C}-9$. There were present, however, two olefinic carbons as doublets (SFORD), and the carbons for the butenolide unit along with the typical protons of that unit in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum. This and the strong uv absorption at about 260 nm supported the butenolide unit as being conjugated with the olefin formed at C-11 and C-12 as in several Scutellaria diterpenes (10,11). Rings A and B contained the same proton-coupled units as the starting material, the same number of double-bond equivalents and methyl groups, and an extra oxygen but no olefinic carbons. The presence of an epoxide group at C-8 and C-9 and its α or β orientation would satisfy the spectral data for compounds 9 and 10 except for specific stereochemical ordering. The J value of 15.8 Hz for the olefinic protons supported a trans substitution (12), and the nOe difference studies confirmed this and identified $\mathrm{H}-11$ and $\mathrm{H}-12$. For example, irradiation of the proton doublet at 6.25 ppm of epoxide 9 showed relaxation to $\mathrm{H}-1 \alpha(1.55 \mathrm{ppm})$ at 5%, to $\mathrm{H}_{2}-16(4.92 \mathrm{ppm})$ at 7%, and to $\mathrm{Me}-17(1.15 \mathrm{ppm})$ at 2%, thereby placing the irradiated proton at $\mathrm{H}-11$. Irradiation at $6.58 \mathrm{ppm}(\mathrm{H}-12)$ caused

9 8,9- β-epoxide
10 8,9- α-epoxide

$11 \mathrm{R}=\mathrm{H}$
$12 \mathrm{R}=\mathrm{Ac}$
relaxation to $\mathrm{H}-14(5.99 \mathrm{ppm})$ at 11%. Because relaxation was not observed to one olefinic proton when the other was irradiated, their orientation must be trans. Any ambiguity about the $\mathrm{H}-11$ and $\mathrm{H}-12$ assignments was eliminated by the long-range $\mathrm{CH}-$ correlation experiment (COLOC), which showed coupling of the $6.58 \mathrm{ppm}(\mathrm{H}-12)$ proton to $\mathrm{C}-14$ (116.65 ppm) and $\mathrm{C}-16$ (70.58 ppm), also $\mathrm{H}-14$ (5.99 ppm) coupled to C-12 (124.59 ppm). Similar data were obtained for epoxide 10.

The stereochemical positioning of the epoxide was based on the observation that an upfield chemical shift change of $3.5-6 \mathrm{ppm}$, relative to the starting olefin, occurs for the homoallylic carbon bearing an axial hydrogen in a six-membered ring, when the epoxide is cis to the axial hydrogen (13). In epoxides 9 and 10, C-5 is homoallylic with an axial hydrogen. Their C-5 chemical shifts are 55.50 and 47.41 ppm , respectively, with that of the starting olefin $\mathbf{4}$ at 54.10 ppm . The upfield difference of 6.7 ppm for compound 10 places the epoxide in the α-position, while the other isomer, compound 9 , shows a small downfield shift. Furthermore, shielding is observed in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum for protons above and below the plane of the epoxide ring, except for those close to the oxygen atom, in which case deshielding occurs (14). Deshielding was reported for $\mathrm{H}-5$ in the 8,9-epoxides of other diterpenes (15), and would therefore be expected for $\mathrm{H}-5$ in compound 10. The value of 2.12 ppm for $\mathrm{H}-5$ is downfield and deshielded in epoxide $\mathbf{1 0}$, as compared to 1.61 ppm for epoxide 9 . This further supports the α-epoxide assignment for compound 10.

The epoxides $\mathbf{9}$ and $\mathbf{1 0}$ were likely produced from the corresponding 8-hydroperoxides, one of which, compound 7 , was identified and could be the precursor of epoxide 9. One of the oxygens of the hydroperoxide unit would attack olefinic C-9 to form the epoxide, while the other oxygen would abstract $\mathrm{H}-12$ to split off water and form a double bond at $\mathrm{C}-11$ and $\mathrm{C}-12$.

Compound 11, the fifth product of photo-oxygenation of 4 has the molecular formula $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{10}$, as supported by fabms, and incorporates both atoms of molecular oxygen. Its ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra are similar to those of 5 except for the signals associated with rings C and D . For example, $\mathrm{C}-14$ has only one proton (4.48 ppm) instead of two (2.44 and 2.49 ppm) and is coupled to a $\mathrm{D}_{2} \mathrm{O}$-exchangeable proton. The presence of a hydroxyl at $\mathrm{C}-14$ was supported by preparation of acetate 17 with four acetate groups. In the ${ }^{1} \mathrm{H}$-nmr spectrum, this showed a downfield shift for $\mathrm{H}-14$ from 4.48 ppm to 5.79 ppm . The other oxygen must form a tetrahydrofuran ring with $\mathrm{C}-9, \mathrm{C}-11, \mathrm{C}-12$, and C-13. Extensive 1D and 2D nmr studies supported structure 11. The key elements of those studies included nOe difference experiments. Irradiation at $\mathrm{H}-1 \alpha$ (1.67 ppm) showed relaxation to $\mathrm{H}-14$ (4.48 ppm) at 4%-which located the hydroxy group to the ring-A side-to $\mathrm{H}-3 \alpha(1.25 \mathrm{ppm})$ at 4%, to $\mathrm{H}-5(2.25 \mathrm{ppm})$ at 5% and to $\mathrm{H}-1 \beta$ (1.83
ppm) at 15%. Irradiation of the olefinic proton at 5.04 ppm caused enhancement of the other olefinic proton (4.93 ppm) by 18%, and $\mathrm{H}-6$ (5.03 ppm) and $\mathrm{H}-7 \beta$ (2.62 ppm) together by 8%, and assigned $\mathrm{H}-17 \mathrm{~A}$ and $\mathrm{H}-17 \mathrm{~B}$. Irradiation of $\mathrm{H}-17 \mathrm{~B}$ (4.93 ppm) located $\mathrm{H}-11 \mathrm{~A}(2.18 \mathrm{ppm})$ by a 12% enhancement; and irradiation of $\mathrm{H}-14$ (4.48 ppm) caused relaxation to $\mathrm{H}-1 \alpha(1.67 \mathrm{ppm})$ by 2% and one $\mathrm{H}-16(4.14 \mathrm{ppm})$ by 4%. The latter proton, $\mathrm{H}-16$, on irradiation enhanced $\mathrm{H}-12 \mathrm{~A}(2.43 \mathrm{ppm})$ by 2%, thereby locating the irradiated proton in the A-position. These results established the lactone carbonyl on the ring-A side and specifically located the protons of the spiro system.

Because the absolute stereochemistry of $\mathbf{3}$ is known (1), the absolute configuration of C-14 must be S. Confirmation of this was obtained from the Horeau esterification method of partial resolution with α-phenylbutanoic anhydride (16). The procedure gave phenylburyric acid with a specific rotation of $+2.5^{\circ}$, which, on the basis of assignment of relative bulkiness of substituent at $\mathrm{C}-14$, corresponds to an S - configuration.

The hydroxygrindelane $\mathbf{1 1}$ would appear to form from the $\mathrm{C}-9 \beta$-hydroperoxide of the ene reaction with the hydroperoxide cleaving between the oxygens; one adding to C 13 to form the tetrahydrofuran ring and the other as the hydroxyl adding in a stereospecific and probably a concerted manner to $\mathrm{C}-14$. This addition results in the lactone ring being disposed in the opposite manner to that in 1.

Peroxy compounds are widely distributed among the various classes of natural products but fewer than fifteen are diterpenoids (17). Compounds $\mathbf{1}$ and $\mathbf{2}$ appear to be the first 9,13-diepoxy labdane or grindelane-type diterpenoids and most likely arise from oxygenation of 3 and its 19 -acetate, the two most abundant terpenes in the plant. Considering the relative instability of these peroxides, the actual yields in the plant are higher than those we report.

EXPERIMENTAL

Generai experimental procedures.-The instruments used and conditions under which measurements were made are given in O'Mathúna and Doskotch (1).

Plant material.-As reported previously (1).
Extraction and isolation.-As reported previously (1).
Amoenolide $K[1]$.—Pooled Si gel column fractions 14-16(1)(25 g) from the MeOH solubles, after separation on Sephadex LH-20 were chromatographed on 500 g of Si gel packed in hexane and eluted with hexane- $\mathrm{Me}_{2} \mathrm{CO}$ (3:1, 2:1, 1:1, 1:2, 1:3). A fraction (4.2 g) eluted by the ($1: 2$) solvent mixture, as monitored by tlc using the column solvent system, was then chromatographed on 100 g of Si gel in CHCl_{3} and eluted with the lower phases of $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (18:1:1, 17:2:1, 16:3:1, 15:4:1). The (16:3:1) solvent system gave a fraction (435 mg) that was separated on a reversed-phase $\mathrm{RP}-8$ column (500 g) equilibrated with $\mathrm{H}_{2} \mathrm{O}$ and eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 9,1: 4,3: 7)$. The (1:4) solvent eluted 280 mg of material that crystallized from hexane- $\mathrm{Me}_{2} \mathrm{CO}(1: 2)$ to give $152 \mathrm{mg}\left(3.8 \times 10^{-3} \%\right.$ of dry wt) of amoenolide K [1]: $\mathrm{mp} 168-169^{\circ}$; $\left.[\alpha]^{23.5}{ }_{\mathrm{D}}-50^{\circ}{ }^{(}{ }^{c}=0.5, \mathrm{MeOH}\right)$; ir $(\mathrm{KBr}) \nu \max 1790$ (lactone $\mathrm{C}=\mathrm{O}$), $1390,1180,1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{uv}$ (MeOH) λ (end absorption) 202 nm (log $\in 3.29$); fabms (glycerol) m/z $383.2077\left(0.4, \mathrm{MH}^{+}, \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{7}\right.$ requires 383.2070), 365 ($1, \mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}$), $347\left(1, \mathrm{MH}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right.$), 329 ($0.5, \mathrm{MH}^{+}-3 \mathrm{H}_{2} \mathrm{O}$), 277 (4), 185 (55), 93 (100), 75 (42), $57(36) ;{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data, see Tables 1 and 2, respectively.

A moenolide K 19-acetate [2]. -Fraction 9(1)(4.0 g) from the MeOH solubles Si gel column, after prior separation on Sephadex LH-20, was chromatographed on 100 g of Si gel with hexane-Me CO_{2} (4:1, 3:1, 2:1, $1: 1,1: 2,1: 3$). The material (426 mg) elured with hexane- $\mathrm{Me}_{2} \mathrm{CO}$ ($1: 1$) crystallized from the same solvent to give 48 mg of acetate 2 . The mother liquor residue when separated on a reversed-phase RP-8 column equilibrated with $\mathrm{H}_{2} \mathrm{O}$ and eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 9,1: 4,3: 7,2: 3,1: 1,3: 2)$ gave from the ($3: 7$) mixture, after crystallization, an additional 109 mg of acetate 2 as needles (total yield $3.3 \times 10^{-3} \%$ of dry wt): $\mathrm{mp} 159-$ 160°; $[\alpha]^{23.5}{ }^{2}-166^{\circ}(c=0.5, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) \cup \max 3420(\mathrm{OH}), 1790(\mathrm{C}=\mathrm{O}), 1730(\mathrm{C}=\mathrm{O}), 1710$ ($\mathrm{C}=\mathrm{O}$), $1610(\mathrm{C}=\mathrm{C}), 1380,1230$ (acerate C-O), $1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;$ uv (MeOH) λ (end absorption) 202 nm ($\log \in 3.31$); fabms (glycerol) $m / z 425.2181\left(1, \mathrm{MH}^{+}, \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{8}\right.$ requires 425.2175); eims $m / z 406$ (0.2 , $\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}$), 345 (1), 332 (1), 208 (11), 179 (21), 135 (6), 121 (11), 97 (18), 79 (14), 43 ($100, \mathrm{CH}_{3} \mathrm{CO}$). ${ }^{2} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nm}$ data, see Tables 1 and 2 , respectively.

Amoenolide K triactate [5].-Acetylation of amoenolide $\mathrm{K}[\mathbf{1}](10 \mathrm{mg})$ and the 19 -acetate $[\mathbf{2}](39 \mathrm{mg})$ was performed separately as described for amoenolide A [3] (1) to give the same crystalline triacetate [5] from hexane- $\mathrm{Me}_{2} \mathrm{CO}(1: 1)$: $\mathrm{mp} 165-166^{\circ} ;[\alpha]^{25.5} \mathrm{D}-92^{\circ}(c=0.4, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) \boldsymbol{v}$ max 1790 (lactone $\mathrm{C}=\mathrm{O}$), 1740 (acetate $\mathrm{C}=\mathrm{O}$), 1370,1260 (acetate C-O), $1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; fabms (glycerol) m/z 509.2366 (1.0, $\mathrm{MH}^{-}, \mathrm{C}_{26} \mathrm{H}_{3} \mathrm{O}_{10}$ requires 509.2387), 449 ($1, \mathrm{MH}^{+}-\mathrm{HOAc}$), 389 ($1, \mathrm{MH}^{+}-2 \mathrm{HOAc}$), 329 (2, $\left.\mathrm{MH}^{-}-3 \mathrm{HOAc}\right), 185$ (68), 93 (100); ${ }^{4} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data in Tables 1 and 2 , respectively.

Photo-oxygenationof 3.-Amoenolide A [3](100 mg) and methylene blue (10 mg) were dissolved in 7 ml of absolute EtOH in a $20-\mathrm{ml}$ reaction vessel (18) and irradiated by a DWY 120 V 650 W quartzhalogen lamp for 1 h while O_{2} was bubbled through it. The apparatus was placed into a silver-lined large Dewar flask and $\mathrm{H}_{2} \mathrm{O}$ cooled to $11 \pm 1^{\circ}$. The residue, after evaporation of ErOH, was passed through a Si gel (5 g) column eluted with CHCl_{3} and $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (49:1) to remove the dye. The eluted residue was chromatographed on Si gel ($6 \mathrm{~g}, 230-400$ mesh) with CHCl_{3} and $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (499:1, 199:1). The last solvent gave a fraction [rlc, $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (16:3:1) lower phase, and p-anisaldehyde spray reagent (1)] that crystallized from hexane-Me $\mathrm{C}_{2} \mathrm{CO}(1: 1)$ to give 15 mg (14%) of $\mathbf{1}$ identical (mp , ir, ${ }^{1} \mathrm{H}-\mathrm{nmr}$, specific rotation, and tlc mobility) to the natural product.

Photo-oxygenation of 4 with thiourea.-The photo-oxygenation was performed as described above for $\mathbf{3}$ with $\mathbf{4}(145 \mathrm{mg})$, methylene blue (10 mg), and thiourea (115 mg) in 7 ml of absolute EtOH irradiated for 1 h . The brown oil residue (133 mg) obtained from the first Si gel column to remove the dye and thiourea products was separated on a Si gel (6 g) column and monitored by tlc with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (18:1:1, lower phase). The first of five eluted fractions gave, on crystallization from hexane- $\mathrm{Me}_{2} \mathrm{CO}(1: 1), 31$ mg (21%) of 5 identical (mp , ir, ${ }^{1} \mathrm{H}-\mathrm{nmr}$, specific rotation, and tlc mobility) to the prepared peracetate of 1. The third fraction ($17 \mathrm{mg}, 12 \%$) gave alcohol $\mathbf{6}$; the other fractions were complex mixtures or polar decomposition products which were not investigated further.
$2 \alpha, 6 \alpha, 9,16,19$-Pentahydroxylabda-8(20),13-dien-15-oic acid, $\boldsymbol{\gamma}$-lactone, 2,6,19-triactate [6].-A heavy oil: $[\alpha]^{23.5} \mathrm{D}+121^{\circ}(c=0.12, \mathrm{MeOH})$; ir (neat) $\nu \max 3479(\mathrm{OH}), 1780,1734(\mathrm{C}=\mathrm{O}), 1637(\mathrm{C}=\mathrm{C}), 1250$, 1027 (C-O), $758 \mathrm{~cm}^{-1} ;$ uv (MeOH) λ (end absorption) $205 \mathrm{~nm}(\log \in 4.21$); fabms (glycerol) m/z 493 (2 , MH^{+}), 433 ($1, \mathrm{MH}^{+}-\mathrm{HOAc}$), 373 ($1, \mathrm{MH}-2 \mathrm{HOAc}$), 355 ($0.6, \mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{HOAc}$), 313 (3 , $\left.\mathrm{MH}^{+}-3 \mathrm{HOAc}\right), 295$ ($3, \mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-3 \mathrm{HOAc}$); eims m/z 432.2071 ($1, \mathrm{M}^{+}-\mathrm{HOAc}, \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}$, requires 432.2149), 372 ($2, \mathrm{M}^{-}-2 \mathrm{HOAc}$), $330\left(2, \mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}-2 \mathrm{HOAc}\right.$), 312 ($5, \mathrm{M}^{+}-3 \mathrm{HOAc}$), 294.1561 (1 , $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-3 \mathrm{HOAc}, \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$ requires 294.1621), $43\left(100, \mathrm{CH}_{3} \mathrm{CO}\right) ;{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr data, see Tables 1 and 2 , respectively.

Photo-oxygenation of 4 .-Triacetate $\mathbf{4}(690 \mathrm{mg})$ and methylene blue (15 mg) were dissolved in 15 ml of absolute ErOH , photo-oxygenated for 1 h , and the dye removed over a Si gel column as described above. The CHCl_{3}-elured orange oil (570 mg) gave from hexane- $\mathrm{Me}_{2} \mathrm{CO}(1: 1) 278 \mathrm{mg}$ (40% yield) of crystalline 5 and a mother liquor residue (fraction A). $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1) eluted a brown oil (200 mg , fraction B).

Fraction A was separated on a Si gel ($10 \mathrm{~g}, 230-400$ mesh $)$ column with CHCl_{3} and $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($499: 1,199: 1$). Five pooled fractions (A1 to A5) were formed from tlc analysis (see experiment with thiourea). Fractions A 1 and A 2 eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(499: 1)$ crystallized from CHCl_{3} to yield epoxides 9 ($21 \mathrm{mg}, 3 \%$) and $\mathbf{1 0}(16 \mathrm{mg}, 2 \%)$, respectively. Fraction A3, eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(199: 1)$, gave grindelane $11(40 \mathrm{mg}, 6 \%)$ as a heavy oil.

Fraction B in MeOH (1 ml) was applied to a reversed-phase RP-8 column (E. Merck) equilibrated with $\mathrm{H}_{2} \mathrm{O}$ and eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 5,2: 5,3: 5)$. The (2:5)eluted fraction showed on tlc two peroxide zones when sprayed with N, N-dimethyl-1,4-phenylenediamine (9). The first zone (17 mg) decomposed rapidly and was not characterized, but the second zone ($40 \mathrm{mg}, 6 \%$) was hydroperoxide 7 .

9(Z)-8-Hydroperoxy-2a,6 ,16,19-tetrabydroxy-8 $\mathbf{Z H}$-labda-9(11),13-dien-15-oicacid, γ-lactone, 2,6,19triactate [77].-A heavy oil: $[\alpha]^{23.5} \mathrm{D}+11^{\circ}(r=0.6, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) v \max 1790,1740(\mathrm{C}=\mathrm{O}), 1645$ ($\mathrm{C}=\mathrm{C}$), 1260 (acetate $\mathrm{C}-\mathrm{O}$), $1030(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;$ uv (MeOH) λ (end absorption) 206 nm ($\log \epsilon 4.13$); fabms (glycerol) m/z $509.2435\left(0.6, \mathrm{MH}^{+}, \mathrm{C}_{26} \mathrm{H}_{3} \mathrm{O}_{10}\right.$ requires 509.2387$)$, $492\left(0.6, \mathrm{MH}^{+}-\mathrm{OH}\right), 448$ (1.5, $\left.\mathrm{M}^{+}-\mathrm{HOAc}\right), 389\left(0.9, \mathrm{MH}^{+}-2 \mathrm{HOAc}\right), 355\left(2, \mathrm{MH}^{+}-2 \mathrm{HOAc}^{2}-\mathrm{H}_{2} \mathrm{O}_{2}\right), 329\left(1, \mathrm{MH}^{+}-3 \mathrm{HOAc}\right), 93$ (100); ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data, see Tables 1 and 2 , respectively.

9(Z)-2 $\alpha, 6 \alpha, 8,16,19-P e n t a h y d r o x y-8 \beta H-l a b d a-9(11), 13$-dien-15-oic acid, γ-lactone, 2,6,19-triactate [8].-Hydroperoxide $7(38 \mathrm{mg})$ in 3 ml of $\mathrm{Me}_{2} \mathrm{CO}$ was treated with $\mathrm{Ph}_{3} \mathrm{P}(85 \mathrm{mg})(19)$ at room temperature for 20 min while stirring. The residue after solvent removal at reduced pressure was chromatographed on Si gel (5 g) with CHCl_{3}. The CHCl_{3} eluted the $\mathrm{Ph}_{3} \mathrm{PO}$ and the product was obtained with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (199:1). Alcohol 8 was obrained as a heavy oil: $[\alpha]^{23.5} \mathrm{D}+4^{\circ}(c=0.6, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) v \max 1790,1740$ ($\mathrm{C}=\mathrm{O}$), $1370,1250,1040 \mathrm{~cm}^{-1} ;$ fabms (glycerol) $m / z 493.2454\left(0.4, \mathrm{MH}^{+}, \mathrm{C}_{26} \mathrm{H}_{3}, \mathrm{O}_{9}\right.$ requires 493.2438), 433 ($0.3, \mathrm{MH}^{+}-\mathrm{HOAc}$), 373 ($0.4, \mathrm{MH}^{+}-2 \mathrm{HOAc}$), 355 ($0.5, \mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{HOAc}$), 313 (0.6 ,
$\left.\mathrm{MH}^{+}-3 \mathrm{HOAc}\right), 295\left(0.7, \mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-3 \mathrm{HOAc}\right.$), 93 (100); eims m/z 279 (0.4), 213 (1), 199 (1), 175 (4), 97 (8), 83 (16), 57 (21), 43 ($100, \mathrm{Ac)}$; ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr data, see Tables 1 and 2, respectively.
(11E)-8,9-Epoxy-2 $\alpha, 6 \alpha, 16,19$-tetrabydroxy-8 $\alpha H, 9 \alpha H$-labda-11,13-dien-15-oicacid, γ-lactone, 2,6,19triacetate [9].-A cystalline product: $\mathrm{mp} 133-135^{\circ},[\alpha]^{23.5} \mathrm{D}+94^{\circ}(c=0.5, \mathrm{MeOH}) ; \operatorname{ir}\left(\mathrm{CHCl}_{3}\right) v \max 1790$, $1750(\mathrm{C}=\mathrm{O}), 1650,1600(\mathrm{C}=\mathrm{C}), 1250,1215,1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda \max 259 \mathrm{~nm}(\log \epsilon 4.39)$; fabms (glycerol) m/z 491.2324 ($0.4, \mathrm{M}^{+}, \mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{9}$ requires 491.2281), 93 (100); eims $m / z 448$ (2, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}$), 430 ($13, \mathrm{M}-\mathrm{HOAc}$), 388 ($4, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{HOAc}$), 370 ($10, \mathrm{M}^{+}-2 \mathrm{HOAc}$), 355 (6, $\mathrm{M}-\mathrm{Me}-\mathrm{HOAc}), 310\left(8, \mathrm{M}^{+}-3 \mathrm{HOAc}\right), 190(100) ;{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr data, see Tables 1 and 2, respectively.
(11E)-8,9-Epoxy-2 $\alpha, 6 \alpha, 16,19$-tetrabydroxy-8 $\beta \mathrm{H}, 9 \beta \mathrm{H}$-labda-11,13-dien-15-oicacid, $\boldsymbol{\gamma}$-lactone, 2,6,19triacetate $\{10\}$.-A crystalline product: $\mathrm{mp} 145-147^{\circ} ;[\alpha]^{23.5} \mathrm{D}+1^{\circ}(c=0.4, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) v$ max $1790,1750(\mathrm{C}=\mathrm{O}), 1650,1600(\mathrm{C}=\mathrm{C}), 1260,1215,1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda \max 260 \mathrm{~nm}(\mathrm{log}$ $\epsilon 4.34$); fabms (glycerol) m/z $491.2319\left(0.3, \mathrm{MH}^{+}, \mathrm{C}_{26} \mathrm{H}_{3}, \mathrm{O}_{9}\right.$ requires 491.2281), 431 ($0.3, \mathrm{MH}^{+}-\mathrm{HOAc}$), 371 ($0.4, \mathrm{MH}^{+}-2 \mathrm{HOAc}$), $311\left(0.6, \mathrm{MH}^{+}-3 \mathrm{HOAc}\right), 93(100) ;{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-nmr data, see Tables 1 and 2, respectively.
(13S,14S)-9,13-Epoxy-2 $\alpha, 6 \alpha, 14,16,19$-pentahydroxylabda-8(17)-en-15-oic acid, γ-lactone, 2,6,19-triacetate [11].-A heavy oil: $[\alpha]^{23,5} \mathrm{D}+33^{\circ}(c=0.1, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) \cup \max 3585,3420(\mathrm{OH}), 1795,1740$ $(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{C}), 1385,1375,1260,1085,1035,1020 \mathrm{~cm}^{-1}$; uv $(\mathrm{MeOH}) \lambda$ (end absorption) 200 nm ($\log \epsilon 3.44$); fabms (glycerol) $\mathrm{m} / \mathrm{z} 509.2418\left(2, \mathrm{MH}^{+}, \mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{10}\right.$ requires 509.2387), $449\left(2, \mathrm{MH}^{+}-\mathrm{HOAc}\right.$), $389\left(6, \mathrm{MH}^{+}-2 \mathrm{HOAc}\right), 329\left(9, \mathrm{MH}^{+}-3 \mathrm{HOAc}\right), 93$ (100); eims $m / z 448\left(67, \mathrm{M}^{+}-\mathrm{HOAc}\right), 388$ (93 , $\left.\mathrm{M}^{+}-2 \mathrm{HOAc}\right), 346\left(11, \mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}-2 \mathrm{HOAc}\right), 328\left(69, \mathrm{M}^{+}-3 \mathrm{HOAc}\right), 43(100) ;{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data, see Tables 1 and 2, respectively.

Acetylation of compound 11.-Compound $\mathbf{1 1}(5 \mathrm{mg})$ was acerylated as described by O'Mathúna and Doskotch (1) to yield 5 mg of terraacetate 12 as a heavy oil; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79(1 \mathrm{H}$, br s, $\mathrm{H}-14), 5.40(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-17 \mathrm{~A}), 4.92(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-17 \mathrm{~B}), 4.20(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~A}), 4.08(1 \mathrm{H}, \mathrm{d}, J=9$ $\mathrm{Hz}, \mathrm{H}-19 \mathrm{~B}), 2.214(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.211(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}, \mathrm{H}-5), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.02(3 \mathrm{H}$, s, Ac), 1.20 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $0.93 \mathrm{ppm}(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$).

Horeau procedure on Compound 11.-Grindelane 11 ($4 \mathrm{mg}, 8 \mu \mathrm{~mol}$) in 0.4 ml of 1.25% solution of 2-phenylbutanoic anhydride ($5 \mathrm{mg}, 16 \mu \mathrm{~mol}$) in anhydrous pyridine was reacted at room temperature for 48 h ; then 3 drops of $\mathrm{H}_{2} \mathrm{O}$ were added and after 30 min the solvents were removed at reduced pressure. The residue was partitioned between saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{ml})$. The combined CHCl_{3} phase was reduced to dryness to give the esterified grindelane (3.8 mg): fabms ["magic bullet" (20)] m/z 677 ($0.5, \mathrm{MNa}^{+}$), 595 ($0.3, \mathrm{MH}^{+}-\mathrm{HOAc}$), 535 ($1, \mathrm{MH}^{+}-2 \mathrm{HOAc}$), 475 (2, $\left.\mathrm{MH}^{+}-3 \mathrm{HOAc}\right), 311\left(2, \mathrm{MH}^{+}-3 \mathrm{HOAc}-\mathrm{PhCH}\left(\mathrm{Et}_{\mathrm{t}}\right) \mathrm{CO}_{2} \mathrm{H}\right), 55(100)$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ $(5 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 5.03(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-17 \mathrm{~A}), 4.86(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-17 \mathrm{~B}), 4.18(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}$, H-19A), $4.05(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-16), 4.04(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~B}), 3.58\left(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.60(1 \mathrm{H}, \mathrm{dd}$, $J=5$ and $12 \mathrm{~Hz}, \mathrm{H}-7 \beta), 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.95\left(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 0.87(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

The NaHCO_{3} solution was acidified with $10 \% \mathrm{HCl}$ and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{ml}$). After washing the combined CHCl_{3} extract with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{ml})$, the organic phase was evaporated to dryness to give 3.8 mg of α-phenylbutanoic acid, $[\alpha]^{25.5} \mathrm{D}+2.5^{\circ}\left(c=0.4, \mathrm{MeOH}\right.$), identical (mp and ${ }^{1} \mathrm{H}$-nmr data) to an authentic sample.

ACKNOWLEDGMENTS

We thank Dr. C.E. Cottrell for the nmr spectra at 500 MHz and Mr. C.R. Weisenberger and Mr. D. Chang for the mass spectra obtained at The Ohio State University Chemical Instrument Center. The $\mathrm{Ft}-\mathrm{nmr}$ spectra at $11.75 \mathrm{Tesla}(500 \mathrm{MHz}$) were obtained at the Center using equipment funded in part by NIH Grant \#1-510RR0145-01A1 (AM-500 only).

LITERATURE CITED

1. D.P. O'Mathúna and R.W. Doskotch, J. Nat. Prod., 57, 767 (1994).
2. D.P. O'Mathúna and R.W. Doskotch, J. Nat. Prod., 57, 1382 (1994).
3. D.P. O'Mathúna and R.W. Doskotch, J. Nat. Prod., 58, 82 (1995).
4. M.J. Pcolinski, D.P. O'Mathúna, and R.W. Doskotch, J. Nat. Prod., 58, 209 (1995).
5. A. Bax and M.F. Summers, J. Am. Chem. Soc., 108, 2093 (1986).
6. L.M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," Pergamon Press, New York, 1969, Chapters 3-2 and 4-1.
7. R.W. Denny and A. Nikon, Org. Reatt., 20, 133 (1973).
8. A.A. Frimer and L.M. Stephenson, in: "Singlet O_{2}, Reaction Modes and Products." Ed. by A.A. Frimer, CRC Press, Boca Raton, FL, 1985, Vol. 2, Part 1, Chapter 3.
9. E. Knappe and D. Peteri, Z. Anal. Chem., 190, 386 (1962).
10. H. Kizu, Y. Imoto, T. Tomimori, K. Tsubono, S. Kadota, and T. Kikuchi, Chem. Pharm. Bull., 35, 1656 (1987).
11. Y.-L. Lin and Y.-H. Kuo, Heterocycles, 27, 779 (1988).
12. L.M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry." Pergamon Press, New York, 1969, pp. 301-304.
13. K. Tori and T. Komeno, Tetrabedron Lett., 1160 (1974).
14. L.E. Paquette, W.E. Fristad, C.A. Schuman, M.A. Beno, and G.G. Christoph, J. Am. Cbem. Soc., 101, 4645 (1979).
15. W. Herz and A.L. Hall, J. Org. Cbem., 39, 11 (1974).
16. A. Horeau, in: "Stereochemistry, Fundamentals, and Methods." Ed. by H.B. Kagan, Georg Thieme, Stuttgart, 1977, Vol. 3, pp. 51-94.
17. D.A. Casteel, Nat. Prod. Rep., 9, 289 (1992).
18. R.W. Doskotch, F.S. El-Feraly, E.H. Fairchild, and C.-T. Huang, J. Org. Chem., 42, 3614 (1977).
19. L. Horner and W. Jurgeleit, Liebigs Ann. Chem., 591, 138 (1956).
20. J.L. Witten, M.H. Schaffer, M. O'Shea, J.C. Cook, M.E. Hemling, and K.L. Rinehart, Jr., Biochem. Biophys. Res. Commun., 124, 350 (1984).

Received 24 March 1995

[^0]: ${ }^{1}$ Taken in part from the Ph.D. Dissertation of Dónal P. O'Mathúna as accepted by the Graduate School, The Ohio State University, August 1988.
 ${ }^{2}$ Current address, Mount Carmel College of Nursing, Columbus, OH 43222.

[^1]:
 ${ }^{b^{6} \text { In } \mathrm{Me}_{2} \mathrm{CO}-d_{5} \text { with reference to } \mathrm{Me}_{2} \mathrm{CO}-d \text {, at } 2.04 \mathrm{ppm} \text {. }}$

[^2]: ${ }^{3}$ The references for the specified nmr experiments performed in this study can be found in O'Mathúna and Doskotch (1).

